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Abstract— Accurate prediction of electric load is of utmost 
importance to energy suppliers, ISOs, financial institutions, 
and other participants in electric energy generation, 
transmission, distribution, and markets. In the modern-world-
scenario, where a lot of effort has been put to maximize 
efficiency of electric power and to curb down pollution due to 
electricity generation, timely and accurate prediction of 
electric load is an indispensable tool, since it not only prevents 
wastage of energy, but also ensures uninterrupted supply of 
electricity even with fluctuating demands. In this paper, we 
use an interval type 2 fuzzy set (IT2FS) for electrical load 
forecasting. The advantage of this over traditional forecasting 
methods is that it can perform the forecasting even in the 
absence of secondary time series like weather data. The 
proposed algorithm is validated on a defined time period and 
the results obtained have been compared with several other 
methods used for the forecasting of electric load for the same 
time period. 

Keywords— Electric Load Forecasting, Interval Type 2 Fuzzy 
Set, Stationary Time Series, Time Series Prediction 

I. INTRODUCTION

The modern day power supply scenario is a complex 
network of demand and factors affecting demand. Load 
forecasting is an important tool for the power supply 
engineers to cater to the efficient management of the power 
grid from the demand and financial point of view. It is a 
challenging endeavor since energy consumption at the 
user’s end depends on a variety of dynamic factors like 
weather conditions and festive weeks of the year. This in 
turn may have a huge impact on energy transactions, market 
shares and profit of competitive electricity markets. 

Accurate load forecasts are critical for short term 
operations and long term planning for utilities. The load 
forecast influences a number of decisions including which 
generators to commit for a given period, and broadly affects 
the wholesale electricity market prices. Load and price 
forecasting algorithms typically also feature prominently in 
reduced-form hybrid models for electricity price, which are 
some of the most accurate models for simulating markets 
and modeling energy derivatives. The electricity price 
forecast is also used widely by market participants in many 
trading and risk management applications. 

There are four types of load forecasting based on the 
prediction time period, namely, Very Short Term Load 
Forecasting (VSTLF), Short Term Load Forecasting 
(STLF), Medium Term Load Forecasting (MTLF), and 
Long Term Load Forecasting (LTLF). LTLF includes 
prediction-making for a period of more than a year, whereas 
MTLF predictions are from one week up to one year, and 

STLF from one hour ahead up to a week. VSTLF, which is 
of particular interest for smart grid applications and 
auction-based electricity markets, covers predictions 
ranging from a few minutes up to an hour. 

In this paper, we focus on general framework for 
Electric Load Forecasting. We have applied our method to 
STLF and MTLF and LTLF. We have applied our method 
of training series different sizes to predict the load for 
different interval ahead.  

Over the years many techniques have been already 
implemented for Load Forecasting. Some of them are: 
artificial neural networks (ANN) [1], Fuzzy Logic 
Approach [2], Bayesian Network Approach [3], various 
hybrid approaches, and many others, including classical 
statistical approaches like multiple liner regression [4] and 
automatic regressive moving average (ARMA) [5], 
Autoregressive Integrated Moving Average (ARIMA) [6]. 
During the last decade or so, neural network approaches 
combined with other methods (such as evolutionary or 
fuzzy methods) are most frequently used [7], [8]. However, 
there are certain anomalies in prediction when neural 
network is applied on “real time” datasets, mostly because 
of the two effects related to neural networks called 
“overfitting” [9] (i.e., when a model describes random error 
or noise instead of the underlying relationship) and “curse 
of dimensionality” (problem caused by the exponential 
increase in complexity associated with adding extra 
dimensions to the ANN input). In such conditions the 
forecasting system can yield poor results. To eliminate 
above mentioned short comings, we have taken an approach 
based on Interval type-II Fuzzy inference system for 
electrical load prediction. 

A type 1 fuzzy set (T1FS) can have a membership 
ߤ ∈ ሾ0, 1ሿ for all points in its domian. Therefore, the 
uncertainty about whether a certain point in the domain 
belongs to a T1FS can be handled effectively by using a 
suitable membership function. A type 2 fuzzy set (T2FS), on 
the other hand, can also handle uncertainties associated 
with the primary membership function by using a secondary 
membership function. An interval type 2 fuzzy set (IT2FS) 
is a special type of T2FS which handles the uncertainty in 
primary membership using a membership interval or 
Footprint of Uncertainty (FOU). 

The algorithm uses historic dataset of electric load to 
generate FOUs and FLRs (Fuzzy Logic Relationship) 
which along with present and previous hour load values 
gives multiple IT2F consequent outputs by IT2F inference 
using relevant FLRGs (Fuzzy Logic Relationship Groups). 
This is followed by reduction and defuzzification to 
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produce multiple numeric outputs and the expected value of 
consequent is calculated. In this way, the proposed method 
forms a model of the power system which is then used for 
load forecasting. 

One major advantage of this method is that it doesn’t 
require secondary time series like temperature, humidity, 
holiday index, etc. for Electric Load prediction. Most of the 
other research papers in this context have used the 
secondary time series. So our method could be very helpful 
in the cases where weather data and other parameters for 
load forecasting are not available. The IT2FS model is not 
dependent on secondary indices as well. Due to the superior 
ability of IT2FS to model knowledge uncertainty, the 
proposed method is expected to perform better than the 
previous methods. Another advantage of our method is that 
it is applicable not only on STLF but on MTLF and LTLF 
as well. 

The performance metric used is the Root Mean Square 
Error (RMSE) and Mean Absolute Probability Error 
(MAPE). The average RMSE and MAPE due to the 
proposed method is lower than that of many of the available 
methods of Electric Load prediction. 

The following figure shows the block diagram for 
prediction of test data using the trained system 

Fig 1. Load Forecasting using IT2FS block diagram 

II. ELEMENTARY CONCEPTS 

      The following definitions are essential to the 
understanding of the new Interval type-2 Fuzzy Set based 
prediction method proposed in this paper. 

A. Definition 1 

Let ܺ ⊆ Թ, be the universe of discourse. Let ݂ሺݐሻ ∈ ܺ 
be a time dependent variable. Then the sequence ݂ሺݐଵሻ , 
݂ሺݐଶሻ, . . . , ݂ሺݐሻ of samples of ݂ሺݐሻ at time instants ݐଵ, ݐଶ, 
 .ܺ  is known as a time series inݐ , . . .

B. Definition 2 

      An interval type-2 fuzzy set (IT2FS)ܣሚ, in the universe of 
discourse ܺ , is characterised by a membership interval, 

known as the footprint of uncertainty (FOU( ሚܣ )), 
encompassing all the embedded primary membership 
functions ܬ௫of ܣሚ.  

FOU (ܣሚ) is bounded by an upper membership function 
(UMF) ߤ෨ሺݔሻ  and a lower membership function (LMF) 
ݔ ሻ at allݔ෨ሺߤ ሻ andݔ෨ሺߤ .ሻݔ෨ሺߤ , respectively take up the 

minimum and maximum of the membership functions of 
the embedded T1FSs in the FOU. 

 

(1) 

 

C. Definition 3 

Letܺ ⊆ Թ, the set of real numbers, be the universe of 
discourse. Let ܣሚ ⊆ ܺ  for ݅ ൌ 1, 2, . . . , ݉  be ݉  IT2FS. Let 
ሻݐ݂ሺ	௧,:ܩ → ሚܣ  be a mapping from the time varying 
variable ݂ሺݐሻ ∈ ܺ to an IT2FS ܣሚ. 

Then for the time series ݂ሺݐଵሻ, ݂ሺݐଶሻ, . . . , ݂ሺݐሻ, we 
obtain an interval fuzzy time series (IT2FTS) ܣሚభ, ܣሚమ, . . . , 
ሚ, where ݇ܣ ∈ ሾ1,݉ሿ ⊆ ॴ, the set of integers according to 
the mapping function ܩ௧,. Let the IT2FTS be denoted by 
 .ሻݐ෨ሺܨ

Example: Consider the time series 
ሾ݂ሺݐଵሻ, ݂ሺݐଶሻ, . . . , ݂ሺݐሻሿ  = 
ሾ40, 37, 14, 10, 29, 19, 11, 25, 39, 38ሿ.  Let ܺ ൌ ሾ10, 40ሿ be 
the universe of discourse, partitioned into non-overlapping 
intervalsܫଵ ൌ ሾ10, 20ሻ, ܫଶ ൌ ሾ20, 30ሻand ܫଷ ൌ ሾ30, 40ሿ. Let 
  .ܺ ሚଷ be 3 IT2FSs inܣ ሚଶ andܣ ,ሚଵܣ

Then using the mapping rule: IF ݂ሺݐሻ ∈  , THENܫ
ሻݐ෨ሺܨ ൌ   .ሻ as followsݐ෨ሺܨ ሚ, we get the IT2FTSܣ

ሾܨ෨ሺݐଵሻ, ,ଶሻݐ෨ሺܨ . . . ,  = ሻሿݐ෨ሺܨ
,ሚଷܣൣ ,ሚଷܣ ,ሚଵܣ ,ሚଵܣ ,ሚଶܣ ,ሚଵܣ ,ሚଵܣ ,ሚଶܣ ,ሚଷܣ  .ሚଷ൧ܣ

(2) 

Let ଷ݂ିሺݐሻ and ଷ݂ି௦ௗሺݐሻ be two series obtained using 
the following formulae. 

ଷ݂ିሺݐሻ ൌ
1
3
݂ሺݐ െ ሺ݇ െ 1ሻሻ

ଷ

ୀଵ

 

ଷ݂ି௦ௗሺݐሻ ൌ ඩ
1
3
ሺ݂ଶሺݐ െ ݅  1ሻሻ െ ଷ݂ି

ଶሺݐሻ

ଷ

ୀଵ

 

(3) 

Suppose, the FOUs of ܣሚଵ, ܣሚଶ and ܣሚଷ are formed based 
on the rule:                                                  

If ଷ݂ିሺݐሻ ∈ ܫ , THEN Gaussian( ଷ݂ିሺݐሻ , 

ଷ݂ି௦ௗሺݐሻሻ ∈ )ሚ൯ where Gaussianܣ൫ܷܱܨ ଷ݂ିሺݐሻ, ଷ݂ି௦ௗሺݐሻሻ 
is the gaussian distribution with a mean of ଷ݂ିሺݐሻ and a 
standard deviation of ଷ݂ି௦ௗሺݐሻ. 

ሚ൯ܣ൫ܷܱܨ ൌራܬ௫
௫∈
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The FOUs are obtained as follows. 

ሚ൯ܣ൫ܷܱܨ ൌ ራ ቐ
1

ߨ2√ ଷ݂ି௦ௗሺݐሻ
݁
ଵ
ଶቆ
ି൫௫ିయషሺ௧ሻ൯

యషೞሺ௧ሻ
ቇ
మ

ቑ
∀యషሺ௧ሻ∈ூ

 

(4) 

UMF ߤ෨ሺݔሻ and LMF ߤ෨ሺݔሻ are given by the following 

formulae: 

ሻݔ෨ሺߤ ൌ యషሺ௧ሻ∈ூ∀ݔܽ݉ ൝
1

ߨ2√ ଷ݂ି௦ௗሺݐሻ
݁
ଵ
ଶ൬
ିሺ௫ିయషሺ௧ሻሻ

యషೞሺ௧ሻ
൰
మ

ൡ 

ሻݔ෨ሺߤ ൌ ݉݅݊∀యషሺ௧ሻ∈ூ ൝
1

ߨ2√ ଷ݂ି௦ௗሺݐሻ
݁
ଵ
ଶ൬
ିሺ௫ିయషሺ௧ሻሻ

యషೞሺ௧ሻ
൰
మ

ൡ 

(5) 

The case in point is illustrated in figures 2 and 3. 

 
Fig. 2. Diagram showing the fuzzification of f(t) to obtain IT2FTS ܨ෨(t) 

 

Fig. 3. FOU of ܣሚଵ obtained for ଷ݂ିሺ2ሻ, ଷ݂ିሺ3ሻ, ଷ݂ିሺ4ሻ and 

ଷ݂ିሺ5ሻ ∈  ଵܫ

It should be noted that, mean and standard deviation 
series for more than 3 hour scan also be used. In fact, 5-
hour moving mean and standard deviation series is, used in 
this paper, for predicting electrical load. 

D. Definition 4 

Let ܣሚ and ܣሚ be two IT2FS in the universe of discourse 
ܺ. Also, let ܣሚ →  ሚ be an FLR in ܺ. Then, the interval typeܣ

2 fuzzy implication to obtain the consequent IT2FS ܣሚ
′ , for 

an antecedent data point ݔଵ ∈  .ሚ, is defined as followsܣ

 

(6) 

 

where ߤ෨ሺݔଵሻ and ߤ෨ሺݔଵሻ are the values of UMF and LMF 

of IT2FS ܣሚ  at ݔ ൌ ଵݔ ෨ߤ ,ሻݔ෨ሺߤ ሻ andݔ෨ሺߤ ,ሻݔ෨ሺߤ ;
ሺݔሻ 

are UMF and LMF of ܣሚ and ܣሚ, respectively. 

 

 

Fig. 4(a). FOU (ܣሚሻ, (b). FOU (ܣሚሻ, (c). Implication from ܣሚ to ܣሚ for 
ଵݔ ∈ ሚܣ ሚ to obtainܣ

,  

In figure 4, 4(a) and 4(b) show the FOUs of sets ܣሚ 
and ሚܣ	 , respectively. For a given ݔଵ ∈ ሚܣ  and the FLR 
ሚܣ → ሚܣ , we can find the consequent set ܣሚ

,  by using the 
implication shown in 4(c). 

E. Example 

1. Let us choose a dataset load requirements of first 
23 hours of 1st January 2004 to predict the 24th 
hour load demand. Here, [݂ሺ1ሻ, ݂ሺ2ሻ, ݂ሺ3ሻ, ݂ሺ4ሻ, 
݂ሺ5ሻ , ݂ሺ6ሻ , ݂ሺ7ሻ , ݂ሺ8ሻ , ݂ሺ9ሻ , ݂ሺ10ሻ , ݂ሺ11ሻ , 
݂ሺ12ሻ , ݂ሺ13ሻ , ݂ሺ14ሻ , ݂ሺ15ሻ , ݂ሺ16ሻ , ݂ሺ17ሻ , 
݂ሺ18ሻ , ݂ሺ19ሻ , ݂ሺ20ሻ , ݂ሺ21ሻ , ݂ሺ22ሻ , ݂ሺ23ሻ ] = 
[12930,12311,11805,11629,11674,11972,12433,1
2744,13370,14246,15042,15672,16064,16053,159
60,16047,17033,18190,17964,17450,16708,15580,
14186]. 

2. Since, the maximum and minimum values are 
݂ሺ18ሻ  = 18190 and ݂ሺ4ሻ  = 11629, respectively, 
we define the universe of discourse ܷ ൌ
ሾ11629, 18190ሿ  and divide into equal, non-
overlapping intervals ଵܫ ൌ ሾ11629, 13816ሻ , 
ଶܫ ൌ ሾ13816, 16003ሻ andܫଷ ൌ ሾ16003, 18190ሿ. 

3. We define IT2FS ܣሚଵ, ܣሚଶ and ܣሚଷ. Then according 
to Equation (2), we obtain the IT2FTS 

෨ೕᇲߤ
ሺݔሻ ൌ ݉݅݊ሼߤ෨

ሺݔଵሻ,  ሻሽݔ෨ሺߤ

෨ೕᇲߤ ሺݔሻ ൌ ݉݅݊ሼߤ෨ሺݔଵሻ, ෨ߤ
ሺݔሻሽ 
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,෨ሺ1ሻܨ ,෨ሺ2ሻܨ ,෨ሺ3ሻܨ ,෨ሺ4ሻܨ ,෨ሺ5ሻܨ ,෨ሺ6ሻܨ ,෨ሺ7ሻܨ ,෨ሺ8ሻܨ 	
,෨ሺ9ሻܨ    ,෨ሺ10ሻܨ ,෨ሺ11ሻܨ ,෨ሺ12ሻܨ ,෨ሺ13ሻܨ ,෨ሺ14ሻܨ 	,෨ሺ15ሻܨ
,෨ሺ16ሻܨ												 ,෨ሺ17ሻܨ ,෨ሺ18ሻܨ ,෨ሺ9ሻܨ ,෨ሺ19ሻܨ ,෨ሺ20ሻܨ 	,෨ሺ21ሻܨ
,෨ሺ22ሻܨ												 ෨ሺ23ሻሿܨ ൌ	

ቈ
,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଵܣ ,ሚଶܣ ,ሚଶܣ ,ሚଶܣ ,ሚଷܣ ,ሚଷܣ

,ሚଶܣ	 ,ሚଷܣ ,ሚଷܣ ,ሚଷܣ ሚଷܣ
. 

4. Using equations (3), we get 

ۏ
ێ
ێ
ێ
ێ
ۍ ଷ݂ିሺ3ሻ, ଷ݂ିሺ4ሻ, ଷ݂ିሺ5ሻ, ଷ݂ିሺ6ሻ, ଷ݂ିሺ7ሻ,

ଷ݂ିሺ8ሻ, ଷ݂ିሺ9ሻ, ଷ݂ିሺ10ሻ, ଷ݂ିሺ11ሻ, ଷ݂ିሺ12ሻ,

ଷ݂ିሺ13ሻ, ଷ݂ିሺ14ሻ, ଷ݂ିሺ15ሻ, ଷ݂ିሺ16ሻ, ଷ݂ିሺ17ሻ,

ଷ݂ିሺ18ሻ, ଷ݂ିሺ19ሻ, ଷ݂ିሺ20ሻ. ଷ݂ିሺ21ሻ. ଷ݂ିሺ22ሻ.

ଷ݂ିሺ23ሻ ے
ۑ
ۑ
ۑ
ۑ
ې

	

= 
12349,11915,11703,11758,12026,12383,12849,
13453,14219,14987,15593,15930,16026,16020,
16347,17090,17729,17868,17374,16579,15491

൩ 

and  

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଷ݂ି௦ௗሺ3ሻ, ଷ݂ି௦ௗሺ4ሻ, ଷ݂ି௦ௗሺ5ሻ, ଷ݂ି௦ௗሺ6ሻ, ଷ݂ି௦ௗሺ7ሻ,

ଷ݂ି௦ௗሺ8ሻ, ଷ݂ି௦ௗሺ9ሻ, ଷ݂ି௦ௗሺ10ሻ, ଷ݂ି௦ௗሺ11ሻ, ଷ݂ି௦ௗሺ12ሻ,

ଷ݂ି௦ௗሺ13ሻ, ଷ݂ି௦ௗሺ14ሻ, ଷ݂ି௦ௗሺ15ሻ, ଷ݂ି௦ௗሺ16ሻ, ଷ݂ି௦ௗሺ17ሻ,

ଷ݂ି௦ௗሺ18ሻ, ଷ݂ି௦ௗሺ19ሻ, ଷ݂ି௦ௗሺ20ሻ, ଷ݂ି௦ௗሺ21ሻ,

ଷ݂ି௦ௗሺ22ሻ,

ଷ݂ି௦ௗሺ23ሻ
	 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

= 
460,289,74,152,312,317,389,616,682,583,420,
182,46,42,486,875,500,309,515,768,1031 ൨. 

5. We find the consequent IT2FS for ݂ሺ23ሻ =14186 
using the FLRG ܣሚଷ → ,ሚଶܣ  .ሚଷ using equation (12)ܣ
The inference is shown in figure 5. 

 
Fig. 5. Inference using ܣሚଷ → ,ሚଶܣ  ሚଷ for ݂ሺ23) = 14186ܣ

6a. The two consequent IT2FS ܣሚଵ
,  and ܣሚଷ

,  are type reduced 
to          obtain T1FS ܣଵ

, and	ܣଷ
, . This is illustrated in figure 

6. 

 

Fig. 6. Type reduction of IT2FS ܣሚଵ
,  and ܣሚଷ

,  to obtain T1FS ܣଵ
,  and ܣଷ

,  

6b. The T1FS ܣଵ
,  and ܣଷ

,  obtained in Step 6a are defuzzified 
using the formula in equation (13) and (14)   to obtain 
crisp consequent values, ܥభ, and ܥయ, . 

7.   The expected value of the consequent (predicted value 
of ݂ሺ23ሻ) is obtained using equation (15). 

III. PROPOSED ALGORITHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. NEW METHOD APPLIED TO ELECTRICAL LOAD 

FORECASTING 

      This new method can be applied for predicting any time 
series, but we have applied it on historic electric load data 
to forecast electric load. 

A. Choosing a Time Series 

1: Select the time series to be predicted and also the time-
span relevant for training and prediction (testing). 

2: Find the variation for the training data set. The 
quantity variation is defined as follows. 

                                                                                                          

 

In the proposed method, the time series used for 
prediction of is the hourly variation of the electric load. 
Figure 7.shows the plots of the hourly load value and the 
hourly variation of an electric load over a period of time.  

 
Fig. 7 hourly plot electric load value and its variation 

IT2FS Based Time Series Forecasting Algorithm 
 

1. Define the universe of discourse and 
divide into intervals 

2. Define IT2FS for each of the intervals 
and fuzzify the time series 

3. System Training 
3a. Construct FOUs for each of the 
IT2FSs 
3b. Construct FLRs using historic time 
series data and group into FLRGs 
3c. Compute Transition Probability 
Matrix (TPM) 

Repeat steps 4, 5 and 6 for each data point to 
be predicted 
4. Find the consequent IT2FS using the 

FLRs for the previous data point 
corresponding to the IT2FS having 
maximum transition probability. 

5. Type Reduction and Defuzzification: 
a) Type reduce the consequent IT2FS 

using equation (13) 
b) Defuzzify the consequent T1FS 

using equation (14) 
6. Predict the next value as the centroid 

and calculate errors RMSE and MAPE 
with respect to original data. 

ሻݐሺ݊݅ݐܽ݅ݎܽݒ ൌ ሻݐሺ݈݀ܽ െ ݐሺ݈݀ܽ െ 1ሻ 
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In the strict sense, a stationary time series is such that 
the joint probability distribution of any ݊  consecutive 
observations of the series remains constant. In the weak 
sense, a time series is said to be stationary if mean and 
standard deviation of the time series data do not vary much 
with time. An inspection of figure 3 shows us that the 
variation data maintains a steadier mean and standard 
deviation compared to hourly load data and can be 
considered to be a weakly stationary time series. Therefore, 
the use of daily variation in the proposed method is 
expected to improve performance. Another advantage, 
arising due to the bounded nature of the variation data, is 
that the universe of discourse becomes smaller compared to 
the hourly load data used. This also results in a decrease in 
computational complexity, since computational complexity 
is directly proportional to the size of the universe of 
discourse. 

      In this paper we have used electric load demand of 
2004-2008 provided by ISO New England IRC (available 
on the internet on the Mathworks Inc. website) as our time 
series of interest. The hourly load data for each hour of each 
day from January through October is selected as the 
training series and the rest of the series from November 
through December is selected as the test data set. 

B. Define the universe of discourse and Intervals 

1. The universe of discourse is defined as 
        

(7) 
where  ܦ and ܦ௫ are the minimum and maximum 
value of training variation, respectively; while ݉ଵ and 
݉ଶ are margins of safety which act as buffer zones in 
case the minimum and maximum values of test 
variation exceeds that of  the training variation. 

2. Divide the universe of discourse ܷ into ݊ intervals in 
the    following way, where ݊ଵ and ݊ଶ are appropriate 
positive real values so that the universe of discourse ܷ  is 
divided into ݊ intervals of equal length ܫଵ, ܫଶ, . . . , ܫ. 

 
(8) 

 
For example, we define the universe of discourse and 

the intervals for electric load as follows. 

After inspecting the daily variation over the period of 
1st January through 30th September of the year 2006, we 
obtain the minimum variation ܦ  = -2695 and the 
maximum variation ܦ௫ =2398. 

We select the margins of safety ݉ଵ  = 5 and ݉ଶ  = 2. 
These margins are required to ensure that maximum and 
minimum variations, for the test period of November and 
December, remain within the universe of discourse U. 
Hence, the universe of discourse is 

ܷ ൌ ሾെ2700,2400ሿ 

We then divide the universe of discourse into 5 intervals 
of length 1000 each as  

ଵܫ ൌ ሾെ2700,െ1700ሿ, ܫଶ ൌ ሾെ1700,െ700ሿ, ܫଷ ൌ
ሾെ700,300ሿ, . . . , ܫହ ൌ ሾ1300,2400ሿ. 

C. FOU Construction 

1: Find ܾ-day mean and standard deviation of training 
variation series. 

Calculate the ܾ -day mean of training deviation as 
follows. 

 
(9) 

 
 

Calculate the ܾ-day standard deviation (sd) of training 
variation as follows. 

 
                                                                                                              
 

(10) 
 

 
   2: Define interval type 2 fuzzy sets and find the 
memberships. 

a: Define ݊ IT2FS  ܣሚଵ, ܣሚଶ, . . . , ܣሚcorresponding to 
the intervals ܫଵ, ܫଶ, . . . , ܫ. 
b: Find the interval type 2 membership of each set 
using the following rules. 

Rule 1: If ݉݁ܽ݊ሺݐሻ	€ ܫ , then ݉݁ܽ݊ሺݐሻ  and ݀ݏሺݐሻ 
will contribute to the membership of set ܣሚ, using rule 
2. 

Rule 2: The UMF and LMF of the set ܣሚat point ݔ, 
i.e., ߤ෨ሺݔሻ and ߤ෨ሺݔሻ are obtained as follows: 

 
 
 
 
 
                                                                                   
                                                                                      
   

(11) 
 

Rule 3: FOU must be scaled such that the highest value 
becomes 1.  

For example, we calculate the mean and standard 
deviation of the training variation data for the electric load 
over 5 days; using equations (9) and (10). 

We select ܾ = 5 for the simple reason that there are 5 
working days in a week. One may also opt for other values 
of	ܾ. The values of electric load demand for a single day 
may fluctuate considerably from the 5-day mean due to 
irregularities in the factors affecting load demand, which 
can be likened to noise in a physical system. Therefore, we 
use the 5-day mean as a measure of the true value of load 
over the period. Standard deviation, on the other hand, 
serves as a measure of the uncertainty associated with the 
true value. By using this approach, we have eliminated the 
need to use highest and lowest values of electric load. 

ܷ ൌ ሾܦ െ ݉ଵ,ܦ௫  ݉ଶሿ 

ܫ ൌ ሾܦ െ ݉ଵ  ݊ଵ, ௫ܦ  ݉ଶ െ ݊ଶሿ 

ሻݐሺ݀ݏ ൌ ඩ
1
ܾ
ሺ݊݅ݐܽ݅ݎܽݒଶሺݐ െ ݅  1ሻሻ െ ݉݁ܽ݊ଶሺݐሻ

ିଵ

ୀଵ

 

ሻݔ෨ሺߤ

ൌ ሺ௧ሻ∈ூ∀ݔܽ݉ ቊ
1

ሻݐሺ݀ݏߨ2√
݁
ଵ
ଶ൬
ିሺ௫ିሺ௧ሻሻ

௦ௗሺ௧ሻ ൰
మ

ቋ 

ሻݔ෨ሺߤ

ൌ ݉݅݊∀ሺ௧ሻ∈ூ ቊ
1

ሻݐሺ݀ݏߨ2√
݁
ଵ
ଶ൬
ିሺ௫ିሺ௧ሻሻ
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మ

ቋ 
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1
ܾ
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D. Rule Construction 

1: Form the FLRs and the FLRGs. 
a: If ݊݅ݐܽ݅ݎܽݒሺݐ െ 1ሻ ∈ ܫ  and ݊݅ݐܽ݅ݎܽݒሺݐሻ ∈ ܫ , 
then the following FLR is formed. 

ܣ →  ܣ
b: FLRGs are formed when there are multiple FLRs 
with common LHS, as given in definition 4. 

 
 
In the present example, we form the following FLRs from 

the data shown in Table 3. 
ଷܣ → ଷܣ ,ଷܣ → ସܣ ,ସܣ → ସܣ ,ସܣ →  ଷܣ

 

  
These FLRs are then grouped into FLRGs as follows. 
ଷܣ																		 →  ସܣ,ଷܣ
ସܣ													 →  ଷ                                       (12)ܣ,ସܣ
 

E. Probability of Occurrence 

Calculate the probabilities of occurrence of each FLR 
for a given FLRG and store in the Transition Probability 
Matrix (TPM). Since, there may be multiple consequent 
outputs for a single antecedent depending on the number of 
IT2FS in the RHS of the FLRG in question, the expected 
value of the consequent is determined using the 
probabilities of occurrences of each FLR in the FLRG. 

F. Draw IT2FS Inference 

In the Inference stage, the consequent output interval 
type 2 fuzzy set, for a given input value (which is the 
previous day variation for stock index prediction), is 
obtained using the FLRs and the FOUs of the 
corresponding sets.   

G. Type Reduction & Defuzzification 

1: Reduce the type of the interval type 2 fuzzy output 
sets obtained for all the sets in the RHS, of the FLRG 
corresponding to the previous variation, by using 
centroid technique. The concerned formula is as 
follows: 
 
 

     (13) 
 
 
2: Defuzzify the type reduced sets using centroid 
defuzzification to obtain crisp values ܸೕ for each set in 

the RHS of the FLRG. The centroid formula is as 
follows: 

 
 

(14) 
 

 
 

To obtain a crisp output value, the consequent IT2FS 
must be type reduced and then defuzzified. Fig 6 illustrates 
type reduction and defuzzification of IT2FS.  

 

Fig.6. Fuzzy Implication from an interval type 2 fuzzy set ܣ onto 
another set ܣ; (b). The resultant output interval type 2 fuzzy set ܱ; (c). 

The centroid and the crisp value 51 of ܱ 

H. Expected Value of the Consequent: 

1: Find the expected value of the predicted variation 
by combining all the obtained crisp values according 
to their probability from the TPM. 

                                                                                                                 
(15) 

 
As explained in the previous stages, there can be 

multiple consequents for a single antecedent. Hence, to 
obtain a single output value, we find the expected value of 
the consequent using the probabilities of occurrence found 
in step 3c. The consequent values obtained for each of the 
FLRs in the relevant FLRG is the one corresponding to the 
maximum probability of occurrence. 

Finally, after following the steps 1 through 6, the 
predicted variation for the next day is found. This is then 
added with the present load demand value, to predict the 
next value. 
                                                                                                                     

(16) 
Finally, it should be noted that the proposed interval 

type 2 fuzzy time series prediction method is a static one. 
The nature of the FOUs and the FLRs keep changing 
dynamically over time due to the high degree of non-
linearity of the electric load. Therefore, the system must be 
retrained periodically to achieve satisfactory results. This 
has been illustrated in algorithm proposed in Section III. 
The plot of the predicted values vs. the actual value can be 
seen in Fig. 7. 

ܸೕ ൌ ෨ೕ݀݅ݎݐ݊݁ܿ ൌ
 ሻݕ෨ೕሺߤ ൈ 	ݕ ݕ݀
ೌೣାమ
ିభ

 ሻݕ෨ೕሺߤ ݕ݀
ೌೣାమ
ିభ

					 

ݐሺ݈݀ܽ  1ሻ ൌ ݐሺ݊݅ݐܽ݅ݎܽݒ  1ሻ   ሻݐሺ݈݀ܽ
ሻݕ෨ೕሺߤ ൌ

ሻݕ෨ೕሺߤ  ሻݕ෨ೕሺߤ

2
 

ݐሺ݊݅ݐܽ݅ݎܽݒ  1ሻ ൌ ܸೕೖ݄ܿݑݏ	ݐ݄ܽݐ	ܽ,
 ܽ,	∀	݇	 ് ݈ 
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Fig. 7. Plot of Actual vs. Predicted values of electric load for the year 2006 

V. EXPERIMENTAL RESULTS 

Dataset and Experimental setup used: The proposed 
algorithm has been tested against the ISO New England 
electric load dataset. Hourly Electric Load variations of ISO 
New England from 01.01.2004 to 31.12.2009 were 
available on [1].  Experiments has been performed in 
MATLAB 7.8.0 environment on a HP Pavilion g6 laptop 
with 4GB RAM, Intel Core-i5 CPU (2.60 GHz) and 64bit 
Windows-8 Operating System. In this paper we have given 
two commonly used performance metrics Root Mean 
Square Error (RMSE) and Mean Absolute Percentage Error 
(MAPE) for different experimental setting of the algorithm 
on different range of the prediction interval and training 
series. 

RMSE=ට
∑ሺௗ௧ௗ	௨ିை	௨ሻమ

ே௨		௧௦		௧௦௧	௦௦
 

 

MAPE=
∑ |ௗ௧ௗ	௨ିை	௨|

ே௨		௧௦		௧௦௧	௦௦
 

(17) 

Algorithm Parameters: Here we have tuned two 
algorithm parameters namely the Interval Size based on the 
deviation series (I) and the Moving Average Window Size 
(W). We have tuned these two give the optimum results. An 
Interval size of 1000 and Moving Average Window Size of 
5 gave us satisfactory results with respect to both of the 
performance measure said above. 

 

Results: We have tested this algorithm on the aforesaid 
database multiple times by varying the training and testing 
series length and their ratio i.e. a certain portion of the total 
historic load data available (2004-2008) was used for the 
experiment. Now training series to testing series ratio is 
varied and the algorithm is run and tested on them. The 
results of the experiments are listed in different tables 
below. 

 

 

TABLE I 
HOURLY VARIATION OF LOAD IN ONE DAY (01.01.2004) AND COMPARISON 

BETWEEN ACTUAL AND PREDICTED DATA. 

 

Hour 
Predicted Load Value  

(in MW) 
Actual Load Value  

(in MW) 
1 16.56588 16.854 
2 17.322 16.978 
3 17.45024 17.877 
4 18.33228 19.296 
5 19.7459 19.313 
6 18.91501 18.839 
7 18.43758 18.149 
8 17.74872 17.256 
9 16.23276 16.232 
10 15.20868 15.102 
11 14.7139 14.312 
12 13.92351 13.935 
13 13.56868 13.807 
14 14.25687 13.834 
15 14.30717 14.137 
16 14.60781 15.009 
17 15.46591 16.459 
18 16.90892 17.633 
19 18.1007 18.482 
20 18.95475 18.996 
21 19.47055 19.241 
22 18.87456 19.167 
23 18.76285 18.859 
24 16.78654 16.854 

 
TABLE II 

COMPARISON OF AVERAGE PREDICTED VALUE AND AVERAGE ACTUAL 

VALUE OVER A WEEK (01.01.2016-07.01.2016) 

 

 
 

TABLE III 
PREDICTION ERROR FOR DIFFERENT AMOUNT OF DATA POINT 

CONSIDERED AND SPAN OF THE TRAINING SERIES 

 

Total time series data 
used for experiment 
(no. of data points) 

Training 
Series : Testing 
Series division 

(--% --%) 

RMSE MAPE 

200 50-50 0.442 0.176 
-- 60-40 0.429 0.1609 
-- 70-30 0.438 0.0671 
-- 80-20 0.565 0.242 
-- 90-10 0.562 0.219 

400 50-50 0.336 0.1596 
-- 60-40 0.442 0.1974 
-- 70-30 0.462 0.1478 
-- 80-20 0.417 0.0219 
-- 90-10 0.445 0.167 

Day of the Week 
Average Predicted 

Value 
Average Actual 

Value 
Sunday 16.9304 17.0143 
Monday 17.0084 17.1495 
Tuesday 16.0216 16.0494 

Wednesday 15.7216 15.7441 
Thursday 15.4284 15.5002 

Friday 15.3088 15.4012 
Saturday 15.2085 15.198 

Nirmal Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2515-2522

www.ijcsit.com 2521



Total time series data 
used for experiment 
(no. of data points) 

Training 
Series : Testing 
Series division 

(--% --%) 

RMSE MAPE 

500 50-50 0.449 0.3178 
-- 60-40 0.443 0.3344 
-- 70-30 0.427 0.2975 
-- 80-20 0.441 0.4225
-- 90-10 0.445 0.431

1000 50-50 0.449 0.35 
-- 60-40 0.456 0.4051 
-- 70-30 0.444 0.4 
-- 80-20 0.443 0.45 
-- 90-10 0.451 0.43 

2000 50-50 0.42 0.39 
-- 60-40s 0.42 0.3831 
-- 70-30 0.426 0.4147 
-- 80-20 0.428 0.3886 
-- 90-10 0.445 0.3923

TABLE IV 
CALCULATION OF RMSE AND MAPE FOR THE CORRESPONDING YEARS OF 

THE DATASET 

Year 

Training 
Series Span: Test 

Series Span 
(in months) 

RMSE MAPE 

2004 6-6 0.454 0.655 
-- 7-5 0.446 0.663 
-- 8-4 0.432 0.669
-- 10-2 0.462 0.795 
-- 11-1 0.481 0.848 

2005 6-6 0.425 0.591 
-- 7-5 0.285 0.0258 
-- 8-4 0.442 0.288
-- 10-2 0.361 0.412
-- 11-1 0.385 0.469

2006 6-6 0.45032 0.78 
-- 7-5 0.42056 0.60
-- 8-4 0.29434 0.35
-- 10-2 0.38255 0.42 

2007 6-6 0.44262 0.86
-- 7-5 0.38832 0.54
-- 8-4 0.2825 0.40 
-- 10-2 0.4204 0.66

2006 & 2007 6-6 0.48523 1.21 
7-5  0.67 
8-4 0.44383 0.71

10-2 0.44562 0.81

Comparison with other research articles: In [10], a 
particle swarm optimization based memetic algorithm for 
model selection in STLF using support vector regression, 
has been proposed. The paper uses hourly electricity load in 
New York City during 2003-2004. This paper shows that 
MAPE for methods like SVM, Hybrid Network, and 
Wavelet Neuro have MAPE 3.03, 2.29 and 2.02 and their 
CLPSO-MA-SVR gives MAPE of 1.43. Our method, 
though tested on different datasets, gives better results. 

In [11] load forecasting results using SSA-SVR on ISO-
NE 2006 dataset gave MAPE in between 1.0 to 2.1 whereas 
the same due to our method on ISO-NE 2006 never exceeds 
1.0 Although in [9] weather forecasts and actual weather 
data has been used but we haven’t considered any such 
secondary time series.  

VI. CONCLUSION

A new Interval Type-II Fuzzy Set based Time Series 
Prediction has been presented. The method is used for the 
purpose of Electric Load Forecasting. This comes out to be 
an efficient method for Load Forecasting with very small 
amount of error in prediction. This method doesn’t use any 
secondary time series like Weather data, week day – 
holiday index, etc. which are commonly used in other 
methods. In future we hope to apply this method for some 
other forecasting scenarios also. 
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